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EXACT SOLUTIONS FOR EVOLUTIONARY SUBMODELS

OF GAS DYNAMICS

UDC 533.06S. V. Golovin

A new class of exact solutions with functional arbitrariness describing the motion of a polytropic
gas is constructed on the basis of invariant submodels of rank two of the evolutionary type. In the
solutions obtained, the velocity is a linear function of some spatial coordinates. These solutions
describe continuous gas dispersion and the motion with density collapse at a finite time.

Introduction. Invariant submodels of rank two for gas-dynamic equations of the evolutionary type describe
exact solutions with two independent variables: time and a certain combination of spatial coordinates. These
submodels are specified by a closed system of differential equations in partial derivatives. The desired functions in
these submodels are invariant components of the velocity vector, density, and pressure. For gas-dynamic equations
with an arbitrary equation of state there are ten different invariant submodels of the type studied, in particular,
the submodel of one-dimensional gas motion. Mamontov constructed canonical forms of these ten submodels [1]
and studied their group properties [2].

However, specific solutions of these submodels have been studied insufficiently. To reveal special features of
every model, we chose a class of solutions with a linear dependence of one of the invariant velocity components on
the invariant independent variable. Such solutions are classical for the submodel of one-dimensional gas motion [3].
The solutions of the other nine submodels can be characterized as follows. In all cases, integration yields an ordinary
second-order differential equation. In the initial “physical” variables, these solutions correspond to motions with a
linear dependence of the velocity component on certain spatial variables (in the general case, these motions were
studied in [4]). The solutions describe continuous gas dispersion, density collapse at a finite time, and oscillatory
motion. Below, trajectories of individual particles on the solutions obtained are described, which leads to a better
understanding of the motion described by the submodels. All solutions are divided into two main classes: motions
with particle trajectories in the form of flat curves and twisted motions. A more detailed description of these classes
is given below.

1. Preliminary Data. Gas-dynamic equations are written in standard terms of the velocity vector
u = (u, v, w), pressure p, and density ρ. All functions depend on the spatial coordinates x = (x, y, z) and time t.
The functions A(p, ρ) specify the equation of state for a gas:

Du+ ρ−1∇p = 0, Dρ+ ρdivu = 0, Dp+A(p, ρ) divu = 0,
(1.1)

D = ∂t + u ∂x + v ∂y + w ∂z.

It is known that all invariant evolutionary submodels of rank two for gas-dynamic equations can be written in
canonical form [5]

Ut + UUλ + b(t)ρ−1pλ = a1, Vt + UVλ = a2, Wt + UWλ = a3,
(1.2)

ρt + Uρλ + ρUλ = ρa4, pt + Upλ +A(p, ρ)Uλ = A(p, ρ)a4.
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Here U = (U, V,W ) is the invariant velocity vector and t and λ are invariant independent variables. The right sides
(a1, . . . , a4) depend on t, λ, and U . The quantities λ and U and the right sides a1, . . . , a4 are expressed in terms of
initial variables in each submodel [1]. Mamontov [2] analyzes the group characteristics of all the submodels studied.

Below, we describe in detail a class of solutions of submodels (1.2) in which the component U of the invariant
velocity U depends linearly on the variable λ. A structural description of this class of solutions is possible if the
equation of state of a polytropic gas is chosen.

2. Integration of the Submodels. In Eqs. (1.2), we convert to the Lagrangian coordinates t and ξ (ξ is
an arbitrary function satisfying the equation ξt + Uξλ = 0). In conversion to the Lagrangian variables using the
function M = ∂λ/∂ξ, the derivatives are transformed as follows: ht + Uhλ → ht and hλ → M−1hξ. The velocity
component in the new variables is U = λt. Writing Eq. (1.2) in the Lagrangian variables, we have

λtt + b(t)pξ/(ρM) = ã1, Vt = ã2, Wt = ã3,
(2.1)

ρt +M−1ρMt = ρã4, pt +M−1A(p, ρ)Mt = A(p, ρ)ã4.

The right sides ã1, . . . , ã4 are functions of a1, . . . , a4 in the Lagrangian variables. It is further assumed that the gas
satisfies the polytropic equation of state A(p, ρ) = γp (γ is the adiabatic exponent). From Eqs. (2.1), it follows that

(ln ρM)t = ã4, (ln pMγ)t = γã4. (2.2)

For all the nine submodels, the second and third equations in (2.1) and Eq. (2.2) with specific functions on
their right sides are integrated explicitly. Below, we assume that the dependence U(λ) is linear. In the Lagrangian
variables, this means that M = M(t):

λ = M(t)ξ, U = Ṁξ. (2.3)

Here and below, the dot and the prime denote differentiation of functions that depend only on t and ξ, respectively.
Remark 1. The inhomogeneous dependence λ = M(t)ξ + h(t) reduces to a homogeneous one because in all

submodels, we can obtain h(t) ≡ 0 by action of a group of continuous transformations admitted by (1.1).
Substituting (2.3) into the first equation in (2.1), we have the key equation

M̈ξ + b(t)ρ−1M−1pξ = ã1. (2.4)

Substitution of the functions V , W , p, and ρ determined from (2.1) and (2.2) into Eq. (2.4) yields the structure

a(t) · b(ξ) = 0 (2.5)

with the vectors a, b ∈ Rn (n = 2, 3, and 4). We note that equations of the form of (2.5) are typical of the
problems related to overdetermined systems of differential equations (group classification, partly invariant solutions,
differential constraints, and a priori assumptions on the type of solution). Studying a specific relation of the problem
of group classification of gas-dynamic equations, Ovsyannikov [6] proposed an idea that made it possible to separate
the variables in (2.5). In the general form, the lemma on separation of variables in Eq. (2.5) is published here for
the first time with consent of its author.

Ovsyannikov’s Lemma. Relation (2.5) holds if and only if there exist a number k (0 6 k 6 n), partitions
of the vectors a = (a′,a′′) and b = (b′, b′′) (a′, b′ ∈ Rk and a′′, b′′ ∈ Rn−k), and a constant ((n− k)× k) matrix C
such that

a′′ = Ca′, b′ = −Ctb′′, (2.6)

where Ct is the transposed matrix C.
Proof. Let the linear capsule L{a(t)} have dimension k and a = (a1, . . . , an)t. Then, there exist k points

tj (j = 1, . . . , k) such that the (n× k) matrix M = (ai(tj)) (i is the row number) has rank k. We assume that the
matrix rank minor is specified by a (k × k) matrix A (detA 6= 0), and the remaining rows form the ((n − k) × k)
matrix B. Let a′ be the rows of the matrix M that form A and a′′ are the remaining rows. Addition of the row
(ai(t)) to the matrix M does not change the matrix rank. Therefore, there exists a vector r = r(t) ∈ Rk for which

a′ = Ar, a′′ = Br

and, hence, r = A−1a′. From this, we have the first relation of (2.6) with the ((n − k) × k) matrix C = BA−1.
Then, (2.5) becomes a′ · b′ + (Ca′) · b′′ = 0 or a′ · (b′ + Ctb′′) = 0, from which, by virtue of dim L(a′) = k, we
have (2.6). Sufficiency of (2.6) is obvious.
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When solving classification problems, we have to exhaust various values of k = 0, . . . , n, partitions of the
vectors a and b, and matrices C with indefinite elements.

Below, the submodels are divided into three types, depending on the dimension of the admitted group
of continuous transformations. Submodels 2.21, 2.22, 2.24, and 2.25 belong to the first type (enumeration same
as in [1]). The infinite-dimensional part of the admitted group contains two arbitrary functions of a Lagrangian
variable. The second type includes submodels 2.8, 2.9, and 2.10, in which the admitted group contains one arbitrary
function. Finally, submodels 2.20 and 2.23 admit only a finite-dimensional group. It is found that the initial formal
division of the submodels into types is supported by similarity between physical characteristics of the solutions
obtained.

3. Submodels of the First Type. Submodel 2.21. Golovin [7] analyzed this submodel. The solution
representation is

u = U, v =
V + z + t(W + y)

t2 + 1
, w =

−W − y + t(V + z)
t2 + 1

, λ = x.

In (1.2), b = 1, a1 = a2 = a3 = 0, and a4 = −2t/(t2 + 1). From the second and third equations in (2.1) and from
Eq. (2.2), we have

V = V0(ξ), W = W0(ξ), ρ =
f(ξ)

M(t2 + 1)
, p =

P (ξ)
Mγ(t2 + 1)γ

. (3.1)

Here and below, V0, W0, P , and f are arbitrary functions. Separating the variables of (2.4) using the Lemma, we
obtain the equation for M

M̈Mγ(t2 + 1)γ−1 = α (α = const) (3.2)

similar to the Emden–Fowler equation and the following constraint on the functions P and f : P ′(ξ) = αξf(ξ). The
trajectory of a particle, starting at the initial time t0 = 0 from a point with coordinates (x0, y0, z0), is determined
by the formulas

x = x0M(t), y = y0 + tz0 + tV0(x0), z = z0 − ty0 − tW0(x0).

Here and below, we use arbitrariness in the choice of α to satisfy the initial condition M(t0) = 1.
Submodel 2.22. The solution representation is

u = U, v = V + y/t, w = W + z/t, λ = x.

For this submodel, in (1.2), we obtain b = 1, a1 = 0, a2 = −V/t, a3 = −W/t, and a4 = −2/t. Integration of
Eqs. (2.1) taking into account (2.2) yields

V = V0(ξ)/t, W = W0(ξ)/t, ρ = f(ξ)/(Mt2), p = P (ξ)/(Mγt2γ). (3.3)

For the function M , we have the generalized Emden–Fowler equation

M̈Mγt2γ−2 = α (α = const). (3.4)

The constraint on P and f is the following: P ′(ξ) = αξf(ξ). Equation (3.4) has a particular solution M = tk with
k = (4− 2γ)/(1 + γ). The particle trajectories are defined by the following formulas (here t0 = 1):

x = x0M(t), y = t(y0 + V0(x0))− V0(x0), z = t(z0 +W0(x0))−W0(x0). (3.5)

Submodel 2.24. The solution representation is

u = V + (x− βy)/t, v = W, w = U, λ = z.

For this submodel, in (1.2) b = 1, a1 = 0, a2 = −V/t + βW/t, a3 = 0, and a4 = −1/t. Integration of (2.1) taking
into account (2.2) yields

V = V0(ξ)/t+ βW0(ξ), W = W0(ξ), ρ = f(ξ)/(Mt), p = P (ξ)/(Mγtγ). (3.6)

The equation for M has the form

M̈Mγtγ−1 = α (α = const). (3.7)

The constraint on P and f is the following: P ′(ξ) = αξf(ξ). Equation (3.7) has a particular solution M = tk with
k = (3− γ)(1 + γ)−1. The particle trajectories are defined by the following formulas (t0 = 1):

x = tx0 + (1− t)(βy0 − V0(z0)), y = y0 − (1− t)W0(z0), z = z0M(t).
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Submodel 2.25. The solution representation is

u = V + z, v = U, w = W, λ = y.

For this submodel, in (1.2), b = 1, a1 = 0, a2 = −W , and a3 = a4 = 0. Integration of (2.1) taking into account (2.2)
yields

V = V0(ξ)− tW0(ξ), W = W0(ξ), ρ = f(ξ)/M, p = P (ξ)/Mγ . (3.8)

The equation for M has the form

M̈Mγ = α (α = const). (3.9)

The constraint on P and f is the following: P ′(ξ) = αξf(ξ). Equation (3.7) has a particular solution M = t2/(1+γ).
The equations of particle trajectories have the following form (t0 = 0):

x = x0 + t(z0 + V0(y0)), y = y0M(t), z = z0 + tW0(y0).

4. Description of Motion. In the case of motion of the first type, particle trajectories are plane curves.
The slope and position of the plane in space are defined by the initial position of the particle. Motions in different
planes are similar and defined by the form of the function M(t). If M(t) 6= 0, the trajectories of various particles
do not intersect. In contrast, if M(t∗) = 0 is satisfied for certain t∗, the collapse occurs: the density increases to
infinity, and all particles arrive at the plane λ = 0.

The motion of gas particles in the aggregate can easily be treated as follows. Let us consider a layer of gas
bounded by an immovable flat wall λ = 0 and a moving piston λp = λ0M(t). The pressure on the piston depends
only on time and varies by the law described by formulas (3.1), (3.3), (3.6), and (3.8) with P (ξ) = P (λ0) = const.
If M(t) increases at t > t0, the piston retreats from the wall λ = 0, and the gas rarefies. As M(t)→ 0, the piston
approaches the wall, which leads to an unlimited increase in density and pressure. The gas layer evolves as follows.
In addition to uniform rarefaction or compression in the λ direction determined by the function M(t), the gas
layer undergoes changes in a plane that is orthogonal to λ. Thus, in submodel 2.21, the entire gas layer rotates
counter-clockwise around the λ axis through angle arctan t (relative to the coordinate origin) and dilates under the
law r = r0

√
t2 + 1 [r is the distance from the point to the λ axis; r0 = r(t0)]. In the remaining submodels, rotation

is absent. In submodel 2.22, the gas dilates in the plane λ = const along the straight lines intersecting the λ axis;
in submodels 2.24 and 2.25, the gas dilates along the positive Ox direction linearly in time. The functions V0(ξ)
and W0(ξ) define the relative displacement of the planes λ = const inside the layer. Using submodel 2.22 as an
example, we show how these functions can be used to control the geometry of gas motion.

For the case of motion described by submodel 2.22, we consider a set of particles lying on a straight line
parallel to the λ axis at the initial time t = 1: y = y0, z = z0. The deformation of this straight line at t > 1 is
defined by the functions V0(x0) and W0(x0). In particular, these functions can be chosen such that at the collapse
moment t∗ (M(t∗) = 0), the particles lying at the initial time t = 1 on the straight line y = y0, z = z0 form a
previously specified curve y = h(s), z = k(s) on the collapse plane x = 0:

V0(x0) =
h(x0)− t∗y0

t∗ − 1
, W0(x0) =

k(x0)− t∗z0

t∗ − 1
. (4.1)

Remark 2. Under mapping by formulas (3.5) with the functions V0 and W0 from (4.1), the complete
preimage of a point occupying a position y = y∗, z = z∗ on the collapse plane x = 0 at t = t∗ is given by

y = y0 + (y∗ − h(x))/t∗, z = z0 + (z∗ − k(x))/t∗, −∞ < x < +∞.

5. Analysis of the Equation for the Function M . To construct classes of exact solutions of Eqs. (3.2),
(3.4), (3.7), and (3.9), group classification with respect to the adiabatic exponent γ was performed for each equation.
From the viewpoint of physics, we considered only values γ > 1. The symmetries found were used for full or partial
integration of the equations.

Submodel 2.21. The nontrivial operator (t2 + 1)∂t + tM∂M is admitted only if γ = 5/3. In this case, by the
substitution M = N(τ)

√
t2 + 1, where τ = arctan t, and single integration, Eq. (3.2) is reduced to the form

Ṅ2 = β − 3αN−2/3 −N2 ≡ h(N), β = const. (5.1)

The initial condition follows from the condition for M : N(0) = M(0) = 1. The behavior of the function h(N) on
the right side of (5.1) is determined by the sign of α. If α < 0, the function h(N) decreases monotonically on the
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semiaxis N > 0 and has a single root Nmax > 0. For α > 0, the function h is positive only if β > 4α3/4. In this
case there are two positive simple roots h(Nl) = h(Nr) = 0, such that h′(Nl) > 0, h′(Nr) < 0, h(N) > 0, and
N ∈ (Nl, Nr). The solution of Eq. (5.1) is written in terms of the function

J(a, b) =

b∫
a

dη√
β − 3αη−2/3 − η2

.

If α > 0 and β > 4α3/4, Eq. (5.1) has solutions which are periodic over τ [8]. The half-period of the solution
is T = J(Nl, Nr). The dependence N(τ) at τ ∈ [0, T ] is given implicitly by the relation J(Nl, N) = τ and is
extended to all values of τ as an even periodic function. To satisfy the initial condition N(0) = 1, the function
obtained must be displaced over the τ axis by the quantity J(Nl, 1) or J(1, Nr), depending on the sign of the
derivative Ṁ(0). A plot of the function N(τ) is shown in Fig. 1 (solid curve).

For α < 0, the solution is constructed similarly. On the interval τ ∈ [0, τ0] with τ0 = J(0, Nmax), the function
N(τ) was defined implicitly by the equation J(0, N) = τ . Then, the function is continued evenly over the entire
interval [−τ0, τ0] and is shifted on the τ axis in order to satisfy the initial condition. A smooth solution exists only
on the finite interval τ ∈ (0, τ∗) and Ṅ(τ∗) =∞ (dashed curve in Fig. 1). The corresponding function M(t) vanishes
at finite t if τ∗ < π/2 or, otherwise, it increases without bound.

Submodels 2.22, 2.24, and 2.25. Zaitsev and Polyanin [9] give a large number of exact solutions of the
generalized Emden–Fowler equation, whose particular cases are Eqs. (3.4), (3.7), and (3.9). For an arbitrary γ, they
admit only the dilation operator X1 = t∂t+σM∂M , where σ = (4−2γ)(1 +γ)−1 for (3.4) and σ = (3−γ)(1 +γ)−1

for (3.7). For an arbitrary γ, in addition to the operator X1 for σ = 2(1 + γ)−1, Eq. (3.9) admits translation over
time X2 = ∂t. For special adiabatic exponents γ = 5/3 for (3.4), γ = 2 for (3.7), and γ = 3 for (3.9), the admitted
algebra is dilated by the projective operator X3 = t2∂t + tM∂M .

For an arbitrary γ, the substitution M = tσN(τ), where τ = ln |t|, reduces Eqs. (3.4) and (3.7) to the
autonomous form

N̈ + (2σ − 1)Ṅ + σ(σ − 1)N = αN−γ .

Equation (3.9) is integrated:

Ṁ2 = β − 2α(γ − 1)−1M1−γ (β = const). (5.2)

For the special adiabatic exponents, the substitution M = tN(τ), where τ = t−1, and single integration
reduce Eqs. (3.4) and (3.7) to the equations

(Ṅ)2 = β − 3αN−2/3 (β = const) (5.3)

and

(Ṅ)2 = β − 2αN−1 (β = const), (5.4)

respectively. If γ = 3, Eq. (3.9) is explicitly integrated:

βM2 = β2(t− t0)2 + α. (5.5)

Relation (5.5) defines families of ellipses and hyperbolas on the plane (t,M). Sedov [3] classifies the types of
solutions of Eqs. (5.2)–(5.4) depending on the sign of the constants α and β. There are three types of N(τ) [in
Eq. (5.2), it is assumed that M ≡ N and τ ≡ t]:

1) α > 0 and β > 0. In this case, the function N(τ) is convex downward (N̈ > 0) and has a single minimum
point N = Nmin at τ = τ∗. As τ → ±∞, the derivative tends to the constant value Ṅ → ±

√
β. A plot of the

function is given in Fig. 2 (bold curve).
2) α < 0 and β > 0. In this case, the function N(τ) is convex upward (N̈ < 0) and there is a single collapse

point τ = τ∗, at which N(τ∗) = 0 and Ṅ(τ∗) =∞. In this case, Ṅ → ±
√
β as τ → ±∞ (thin curve in Fig. 2).

3) α < 0 and β < 0. In this case, pulsations with collapse take place; the function N(τ) is convex upward
and does not exceed the value of Nmax. A smooth solution exists only in a finite interval over τ , on whose boundary,
N(τ∗) = 0 and Ṅ(τ∗) =∞. A plot of the function is given in Fig. 2 (dashed curve).

6. Submodels of the Second Type. Submodel 2.8. In the cylindrical coordinates (x, r, θ), the solution is
written as

uc = V + x/t, vc = U, wc = W, λ = r.
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Here and below, uc, vc, and wc are the axial, radial, and tangential velocity components, respectively. In this
submodel, b = 1, a1 = W 2/λ, a2 = −V/t, a3 = −UW/λ, and a4 = −(U/λ + 1/t). Integration of (2.1) taking into
account (2.2) yields

V = V0(ξ)/t, W = W0(ξ)/M(t), ρ = f(ξ)/(M2t), p = P (ξ)/(M2γtγ). (6.1)

As above, the functions V0, W0, f , and P are arbitrary. In separation of variables in Eq. (2.4) there are two cases
by virtue of the Lemma. If γ = 3/2, the function M is defined explicitly: M = α

√
t. In this case, a constraint is

imposed on the arbitrary functions W 2
0 (ξ) = αξP ′(ξ)/f(ξ) − α4ξ2/4. In the second case, γ is arbitrary, and the

function M satisfies the equation

M̈M3 + αt1−γM4−2γ = β2, α, β = const. (6.2)

For this submodel, P ′(ξ) = αξf(ξ) and W0 = βξ. If t0 = 1, the particle trajectories are defined by the formulas

x = (x0 + V0(r0))t− V0(r0), r = r0M(t), θ = θ0 +
W0(r0)
r0

∫
dt

M2
.

Submodel 2.9. The solution representation is

uc = V + βθ, vc = U, wc = W, λ = r.

For this submodel, b = 1, a1 = W 2/λ, a2 = −βW/λ, a3 = −UW/λ, and a4 = −U/λ. Integration of (2.1) taking
into account (2.2) yields

V = −βW0(ξ)
ξ

∫
dt

M2
+ V0(ξ), W =

W0(ξ)
M(t)

, ρ =
f(ξ)
M2

, p =
P (ξ)
M2γ

. (6.3)

In separation of variables in Eq. (2.4) there are two cases. In the first case, M ≡ 1, U = 0, V = −βW0(r)t+ V0(r),
W = W0(r), ρ = f(r), p = P (r), and P ′(r) = f(r)W0(r). This solution defines an axisymmetrical shear flow. The
trajectory of each particle is a spiral wound around a circular cylinder. The second case presents more complex
motions of a gas. The function M satisfies the equation

M̈M3 + αM4−2γ = σ2, α, σ = const. (6.4)

In addition, P ′(ξ) = αξf(ξ) and W0 = σξ. The particle trajectories with t0 = 0 are defined by the formulas

x = x0 + (βθ0 + V0(r0))t, r = r0M(t), θ = θ0 +
W0(r0)
r0

∫
dt

M2
.

Submodel 2.10. Mustaev and Khabirov [10] analyzed this submodel. The solution representation as

uc = V − (θ − x)/t, vc = U, wc = W, λ = r.

For this submodel, b = 1, ã1 = W 2/λ, ã2 = (W−λV )/(tλ), ã3 = −UW/λ, and ã4 = −(U/λ+1/t). Integrating (2.1)
with allowance for (2.2), we have

V =
W0(ξ)
tξ

∫
dt

M2
+
V0(ξ)
t

, W =
W0(ξ)
M(t)

, ρ =
f(ξ)
M2t

, p =
P (ξ)
M2γtγ

. (6.5)
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The key equation (2.4) in this submodel coincides with that in submodel 2.8. Therefore, in this submodel, there
are also two possible cases for the function M and the same constraints are imposed on W0, P , and f . The particle
trajectories with t0 = 1 are defined by the formulas

x = x0t+ (θ0 − V0(r0))(1− t), r = r0M(t), θ = θ0 +
W0(r0)
r0

∫
dt

M2
.

7. Description of Motion. The motion of particles for solutions of the second type can be represented as
follows. Along the trajectory, the axial coordinate x depends linearly on time t in all the three solutions. Hence,
the trajectory of each particle can be parametrized by the x coordinate instead of t. Then, the law of variation
of the radial coordinate of a particle defines a surface of revolution with generatrix M(x) in the space of (x, r, θ).
The particle trajectory is a spiral wound around this surface according to the law of variation of θ. We note that
if M(t∗) = 0 for a certain t∗, all particles arrive at the Ox axis at time t∗ during this motion.

To describe the motion of gas particles in the aggregate, we consider a gas enclosed in a cylinder r = r0M(t).
The pressure on the cylinder surface is the same at all points and is given by Eqs. (6.1), (6.3), and (6.5), where
P (ξ) = P (r0) = const. If the function M(t) increases, the gas is rarefied. At the same time, as M(t)→ 0, the gas
cylinder compresses and transforms into a straight line, and the density and pressure increase to infinity. The gas

particles move along the cylinder axis and rotate about it. If the integral
∫
M−2dt converges, the particles perform

a finite number of revolutions around the axis; otherwise, they perform an infinite number of revolutions.
The function V0(ξ) defines a preimage of a point on the collapse manifold. Thus, in submodel 2.8, the

preimage of the point x = x∗ at t = t∗ [M(t∗) = 0] is the surface of revolution

x = t−1
∗ (x∗ + (1− t∗)V0(r)), 0 6 r < +∞.

In submodels 2.9 (for β 6= 0) and 2.10, a solution that is continuous over the entire space does not exist
because the velocity component u depends linearly on the polar angle θ. At the same time, motion with discontinuity
along an infinite surface with the edge on the Ox axis is possible. The initial position of the discontinuity surface
is determined arbitrarily in the coordinates x0, r0, and θ0 for t = 1. Further, its form and position are calculated
by the formulas that define particle trajectories.

Remark 3. In all the solutions constructed, the functions V0(ξ) and W0(ξ) can have discontinuities of the
first kind. These correspond to solutions with a discontinuity along the surfaces λ = λ0M(t).

8. Analysis of the Equation for the Function M . Submodels 2.8 and 2.10. For an arbitrary γ, Eq. (6.2)
does not admit point transformations.

If γ = 5/3, the projective operator X = t2∂t+ tM∂M is admitted. In this case, the substitution M = tN(τ),
where τ = t−1, and single integration reduce Eq. (6.2) to the form

(Ṅ)2 = σ + 3αN−4/3/2− β2N−2 ≡ h(N,σ), σ = const. (8.1)

Equation (8.1) has solutions that are periodic in τ . To prove this, we need to establish the existence of an inter-
val [N1, N2] such that

h(N1, σ) = h(N2, σ) = 0, hN (N1, σ) > 0, hN (N2, σ) < 0 (8.2)

(hN ≡ ∂h/∂N) [8]. The existence of such an interval is ensured by the existence of a point with the coordinates
N∗ = (β2/α)3/2 and σ∗ = −2α/(9β2) for α > 0, at which

h(N∗, σ∗) = 0, hN (N∗, σ∗) = 0,

hNN (N∗, σ∗) = −(4/3)(β2/α)−6 < 0, hσ(N∗, σ∗) = 1 > 0.

The periodic function N(τ) takes values 0 < N1 6 N 6 N2 6∞. The function M(t) is plotted between the straight
lines M = N1t and M = N2t and performs an infinite number of oscillations between them in the vicinity of t = 0.
In this case, M(0) = 0 and the derivative M ′(t) has a discontinuity of the second kind at the point t = 0 (Fig. 3).

If γ = 3/2, Eq. (6.2) admits the dilation operator X = 2t∂t +M∂M . The substitution M = N(τ)
√
t, where

τ = ln |t|, and single integration reduce Eq. (6.2) to the form

(Ṅ)2 = σ +N2/4 + 2αN−1 − β2N−2 ≡ h(N,σ), σ = const. (8.3)
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To prove the existence of periodic solutions of Eq. (8.3), we prove the existence of an interval [N1, N2] ⊂ (0,∞)
that satisfies conditions (8.2). The zeros of the function h(N,σ) coincide with the zeros of the polynomial Q(N) =
(1/4)N4 +σN2 + 2αN −β2. Using the Sturm theorem, we find that for α > 0 and σ < 0, the polynomial Q(N) has
one negative root and two positive roots. Because Q(N)→ +∞ as N → +∞, the first two positive roots of Q(N)
are the desired boundaries of the interval [N1, N2]. The periodic solution of N(τ) corresponds to a function M(t)
whose plot is located between curves of M = N1

√
t and M = N2

√
t and performs an infinite number of oscillations

between these curves in the vicinity of t = 0. In this case, M(0) = 0 and M ′(0) = +∞ (Fig. 4).
For γ = 2, Eq. (6.2) admits the operator (4β2t2 − 4αt)∂t + (4β2t − α)M∂M . The substitution M =

t1/4(α− tβ2)3/4N(τ), where τ = ln |β2 − α/t|, reduces Eq. (6.2) to the autonomous form

8α2N3(2N̈ + Ṅ) = 3α2N4 − 16.

Submodel 2.9. For an arbitrary γ, Eq. (6.4) admits only translation over time X = ∂t. Single integration of
this equation yields

Ṁ2 = δ − σ2M−2 − αM2−2γ/(1− γ) ≡ h(M, δ). (8.4)

For α > 0, there exists a point with the coordinates M∗ = k1/(4−2γ) and δ∗ = γσ2(γ − 1)−1k1/(γ−2) (k = σ2/α), at
which

h(M∗, δ∗) = 0, hM (M∗, δ∗) = 0,

hMM (M∗, δ∗) = (γ − 2)α−1kγ/(γ−2), hδ(M∗, δ∗) = 1 > 0.

Thus, if 1 < γ < 2, the conditions of existence of a periodic solution are satisfied for Eq. (8.4). If β = 0, this solution
is a “gas pendulum” [11]. If β 6= 0, a solution is obtained that has so-called phase periodicity over time [8] (after
a lapse of a period, a general flow pattern is restored but the gas particles do not return to the initial position).
If γ = 2, Eq. (6.4) is integrated explicitly:

δM2 = δ2(t− t0)2 + σ2 − α. (8.5)

Equation (8.5) defines the families of ellipses and hyperbolas on the plane (t,M).
9. Submodels of the Third Type. In submodels of the third type, we have to deviate from the canonical

form of their representation and choose invariant functions differently.
Submodel 2.20. The solution representation is

u = U − (βσ − αt)(τV + tW )
(t2 − στ)2

+
(ατ − βt)(tV + σW )

(t2 − στ)2
,

v =
τV + tW

t2 − στ
+
ty − τz
t2 − στ

, w = − tV + σW

t2 − στ
+
tz − σy
t2 − στ

,

ρ = ρ(t, λ), p = p(t, λ), λ = x+
βσ − αt
t2 − στ

y +
ατ − βt
t2 − στ

z.
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The equations of the submodel have the form

DU +
t4 + (α2 + β2 − 2στ)t2 − 2αβ(σ + τ)t+ β2σ2 + (α2 + σ2)τ2

(t2 − στ)2ρ
pλ

= −2
βt3 − 3ατt2 + 3βστt− αστ2

(t2 − στ)3
V − 2

−αt3 + 3βσt2 − 3αστt+ βσ2τ

(t2 − στ)3
W,

DV +
βt2 + α(σ − τ)t− βσ2

(t2 − στ)ρ
pλ = 0, D = ∂t + U∂λ,

DW +
−αt2 + β(σ − τ)t+ ατ2

(t2 − στ)ρ
pλ = 0,

Dρ+ ρUλ = − 2tρ
t2 − στ

, Dp+A(p, ρ)Uλ = −A(p, ρ)
2t

t2 − στ
.

Below, we assume that the gas satisfies the polytropic equation of state A(p, ρ) = γp. After integration in the
Lagrangian coordinates t and ξ, we obtain

ρ =
f(ξ)

M(t2 − στ)
, p =

P (ξ)
Mγ(t2 − στ)γ

,

V = (βJ2 + α(σ − τ)J1 − βσ2J0)P ′(ξ)/f(ξ) + V0(ξ), (9.1)

W = (−αJ2 + β(σ − τ)J1 + ατ2J0)P ′(ξ)/f(ξ) +W0(ξ).

Here J0 =
∫

dt

(t2 − στ)γMγ
, J1 =

∫
t dt

(t2 − στ)γMγ
, and J2 =

∫
t2 dt

(t2 − στ)γMγ
. In the remaining equation

M̈ξ +
t4 + (α2 + β2 − 2στ)t2 − 2αβ(σ + τ)t+ β2σ2 + (α2 + σ2)τ2

(t2 − στ)1+γMγ

P ′(ξ)
f(ξ)

+ 2
βt3 − 3ατt2 + 3βστt− αστ2

(t2 − στ)3
V + 2

−αt3 + 3βσt2 − 3αστt+ βσ2τ

(t2 − στ)3
W = 0,

it is necessary to substitute the expressions for V and W from (9.1) and separate the variables in it according to
the Lemma. In this case, we obtain intricate formulas, which are omitted here.

Submodel 2.23. The solution representation is

u = U(λ) + z + αV (λ) + tW (λ), v = V (λ), w = W (λ),

p = p(λ), ρ = ρ(λ), λ = x− αy − tz.

The equations of the submodel have the form

Ut + UUλ + (t2 + α2 + 1)pλ/ρ = −2W,

Vt + UVλ − αpλ/ρ = 0, Wt + UWλ − tpλ/ρ = 0,

ρt + Uρλ + ρUλ = 0, pt + Upλ +A(p, ρ)Uλ = 0.

Next, we consider a polytropic gas [A(p, ρ) = γp]. In the Lagrangian coordinates t and ξ, integration yields

ρ =
f(ξ)
M

, p =
P (ξ)
Mγ

, V =
αP ′(ξ)
f(ξ)

∫
dt

Mγ
+ V0(ξ), W =

P ′(ξ)
f(ξ)

∫
t dt

Mγ
+W0(ξ).

The remaining equation of the submodel takes the form

M̈ξ +

(
t2 + α2 + 1

Mγ
+ 2

∫
t dt

Mγ

)
P ′(ξ)
f(ξ)

+ 2W0(ξ) = 0.

According to the Lemma there are two possible cases:
1) γ = 2, M = t2 + α2 + 1, and W0 = −ξ;

2) M̈ + a
( t2 + α2 + 1

Mγ
+ 2

∫
t dt

Mγ

)
+ 2b = 0, P ′(ξ) = aξf(ξ), and W0 = bξ.
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Conclusions. A new class of exact solutions describing three-dimensional motions of a polytropic gas is
constructed. The solutions describe continuous dispersion and infinite compression of the gas over finite or infinite
time intervals. These solutions were derived for the evolutionary invariant submodels of rank two. In the solutions
obtained, the velocity depends linearly on certain spatial coordinates. The solutions contain three arbitrary functions
of one variable. Integration of the submodels reduces to solution of a second-order ordinary differential equation.
All submodels are divided into two types. Submodels of the first type describe compression or rarefaction of a flat
gas layer. The particle trajectories are plane curves; the slope and position of the plane in space are determined
by the initial position of the particle. In motion with density collapse, a preimage of a point on the collapse plane
is a certain spatial curve, whose initial configuration can be chosen rather arbitrarily by virtue of the existing
arbitrariness of the solution. Submodels of the second type describe the compression or rarefaction of the gas filling
a cylinder whose radius varies with time. Moving along the cylinder axis, the particles perform a finite or infinite
number of revolutions around the axis. In the case of motion with density collapse, the cylinder is compressed and
transformed into a straight line. The existence of oscillatory regimes of gas motion is shown.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 02-01-00550
and 00-15-96163).
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